

Welcome to fairgrad’s documentation!

Contents:

	Introduction

	Installation

	Quick Start

	Usage Example

	Citation

	Reference
	fairness.functions

	fairgrad.torch.cross_entropy

	fairgrad.torch.fairness_loss

Introduction

FairGrad, is an easy to use general purpose approach to enforce
fairness for gradient descent based methods. The core idea is to enforce fairness by iteratively learns
group specific weights based on whether they are advantaged or not. FairGrad is:

	Simple and easy to integrate with no significant overhead

	Supports Multiclass problems and can work with any gradient based methods

	Supports various group fairness notions including exact and approximate fairness

	Is competitive on various tasks including complex NLP and CV ones

Installation

You can install FairGrad from PyPI with pip or your favorite package manager:

pip install fairgrad

Quick Start

To use fairgrad simply replace your pytorch cross entropy loss with
fairgrad cross entropy loss. Alongside, regular pytorch cross entropy arguments,
it expects following extra arguments:

y_train (np.asarray[int], Tensor, optional): All train example's corresponding label.
 Note that the label space must start from 0.
s_train (np.asarray[int], Tensor, optional): All train example's corresponding sensitive attribute. This means if there
 are 2 sensitive attributes, with each of them being binary. For instance gender - (male and female) and
 age (above 45, below 45). Total unique sentive attributes are 4.
 Note that the protected space must start from 0.
fairness_measure (string): Currently we support "equal_odds", "equal_opportunity", "accuracy_parity", and "demographic_parity".
 Note that demographic parity is only supported for binary case.
epsilon (float, optional): The slack which is allowed for the final fairness level.
fairness_rate (float, optional): Parameter which intertwines current fairness weights with sum of previous fairness rates.

Usage Example

Below is a simple example:

>>> from fairgrad.torch import CrossEntropyLoss
>>> input = torch.randn(10, 5, requires_grad=True)
>>> target = torch.empty(10, dtype=torch.long).random_(2)
>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = CrossEntropyLoss(y_train = target, s_train = s, fairness_measure = 'equal_odds')
>>> output = loss(input, target, s, mode='train')
>>> output.backward()

For complete worked out example refer to example folder on github.

We highly recommend to standardize features by removing the mean and scaling to unit variance.
This can be done using standard scalar module in sklearn.

Citation

Citation for this work:

@article{maheshwari2022fairgrad,
 title={FairGrad: Fairness Aware Gradient Descent},
 author={Maheshwari, Gaurav and Perrot, Micha{\"e}l},
 journal={arXiv preprint arXiv:2206.10923},
 year={2022}}

Reference

Contents:

	fairness.functions

	fairgrad.torch.cross_entropy

	fairgrad.torch.fairness_loss

fairness.functions

	
class fairgrad.fairness_functions.AccuracyParity(y_unique, s_unique, y, s)

	The function implements the accuracy parity fairness function.
A model \(h_θ\) is fair for Accuracy Parity when theprobability of being correct is independent of the sensitive attribute.

	Parameters

	
	y_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique labels in all label space.

	s_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique protected attributes in all protected attribute space.

	y (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all label space

	s (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all protected attribute space

	
class fairgrad.fairness_functions.DemographicParity(y_unique, s_unique, y, s)

	The function implements the demographic parity fairness function. A model \(h_θ\) is fair for Demographic Parity when
the probability of predicting each label is independent of the sensitive attribute.

	Parameters

	
	y_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique labels in all binary label space.

	s_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique protected attributes in all protected attribute space.

	y (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all binary label space

	s (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all protected attribute space

	
class fairgrad.fairness_functions.EqualityOpportunity(y_unique, s_unique, y, s, y_desirable)

	The function implements the accuracy parity fairness function.
A model \(h_θ\) is fair for Equality of Opportunity when the probability of predicting the
correct label is independent of the sensitive attribute for a given subset of labels called the desirable outcomes

	Parameters

	
	y_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique labels in all label space.

	s_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique protected attributes in all protected attribute space.

	y (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all label space

	s (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all protected attribute space

	y_desirable (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – the label for which the fairness needs to be enforced.

	
class fairgrad.fairness_functions.EqualizedOdds(y_unique, s_unique, y, s)

	The function implements the equal odds fairness function. A model \(h_θ\) is fair for Equalized Odds when
the probability of predicting the correct label is independent of the sensitive attribute.

	Parameters

	
	y_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique labels in all label space.

	s_unique (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all unique protected attributes in all protected attribute space.

	y (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all label space

	s (npt.ndarray[int [https://docs.python.org/3/library/functions.html#int]]) – all protected attribute space

fairgrad.torch.cross_entropy

	
class fairgrad.torch.cross_entropy.CrossEntropyLoss(reduction='mean', fairness_measure=None, y_train=None, s_train=None, y_desirable=[1], epsilon=0.0, fairness_rate=0.01, **kwargs)

	This is an extension of the CrossEntropyLoss provided by pytorch. Please check pytorch documentation
for understanding the cross entropy loss.

	Parameters

	
	reduction (string, optional) – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will
be applied, 'mean': the weighted mean of the output is taken,
'sum': the output will be summed. Note: size_average
and reduce are in the process of being deprecated, and in
the meantime, specifying either of those two args will override
reduction. Default: 'mean'

	fairness_measure (string, FairnessMeasure) – Currently supported are “equal_odds”, “equal_opportunity”, “demographic_parity”, and “accuracy_parity”.

	y_train (np.asarray[int [https://docs.python.org/3/library/functions.html#int]], Tensor, optional) – All train example’s corresponding label

	s_train (np.asarray[int [https://docs.python.org/3/library/functions.html#int]], Tensor, optional) – All train example’s corresponding sensitive attribute. This means if there
are 2 sensitive attributes, with each of them being binary. For instance gender - (male and female) and
age (above 45, below 45). Total unique sentive attributes are 4.

	y_desirable (np.asarray[int [https://docs.python.org/3/library/functions.html#int]], Tensor, optional) – All desirable labels, only used with equality of opportunity.

	epsilon (float [https://docs.python.org/3/library/functions.html#float], optional) – The slack which is allowed for the final fairness level.

	fairness_rate (float [https://docs.python.org/3/library/functions.html#float], optional) – Parameter which intertwines current fairness weights with sum of previous fairness rates.

	**kwargs – Arbitrary keyword arguments passed to CrossEntropyLoss upon instantiation. Using is at your own risk as it might result in unexpected behaviours.

Examples:

>>> input = torch.randn(10, 5, requires_grad=True)
>>> target = torch.empty(10, dtype=torch.long).random_(2)
>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = CrossEntropyLoss(y_train = target, s_train = s, fairness_measure = 'equal_odds')
>>> output = loss(input, target, s, mode='train')
>>> output.backward()

fairgrad.torch.fairness_loss

	
class fairgrad.torch.fairness_loss.FairnessLoss(base_loss_class, reduction='mean', fairness_measure=None, y_train=None, s_train=None, y_desirable=[1], epsilon=0.0, fairness_rate=0.01, **kwargs)

	This is an extension of the losses provided by pytorch. Here, we augment the losses to enforce fairness. The
exact algorithm can be found in the Fairgrad paper <https://arxiv.org/abs/2206.10923>.

	Parameters

	
	base_loss_class (nn.modules.loss._Loss) – Specifies the base loss as a proper base loss.

	reduction (string, optional) – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will
be applied, 'mean': the weighted mean of the output is taken,
'sum': the output will be summed. Note: size_average
and reduce are in the process of being deprecated, and in
the meantime, specifying either of those two args will override
reduction. Default: 'mean'

	fairness_measure (string, FairnessMeasure) – Currently supported are “equal_odds”, “equal_opportunity”, “demographic_parity”, and “accuracy_parity”.

	y_train (np.asarray[int [https://docs.python.org/3/library/functions.html#int]], Tensor, optional) – All train example’s corresponding label

	s_train (np.asarray[int [https://docs.python.org/3/library/functions.html#int]], Tensor, optional) – All train example’s corresponding sensitive attribute. This means if there
are 2 sensitive attributes, with each of them being binary. For instance gender - (male and female) and
age (above 45, below 45). Total unique sentive attributes are 4.

	y_desirable (np.asarray[int [https://docs.python.org/3/library/functions.html#int]], Tensor, optional) – All desirable labels, only used with equality of opportunity.

	epsilon (float [https://docs.python.org/3/library/functions.html#float], optional) – The slack which is allowed for the final fairness level.

	fairness_rate (float [https://docs.python.org/3/library/functions.html#float], optional) – Parameter which intertwines current fairness weights with sum of previous fairness rates.

	**kwargs – Arbitrary keyword arguments passed to base_loss_class upon instantiation. Using is at your own risk as it might result in unexpected behaviours.

Examples:

>>> input = torch.randn(10, 5, requires_grad=True)
>>> target = torch.empty(10, dtype=torch.long).random_(2)
>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = FairnessLoss(nn.CrossEntropyLoss,y_train = target, s_train = s, fairness_measure = 'equal_odds')
>>> output = loss(input, target, s, mode='train')
>>> output.backward()

	
forward(input, target, s=None, mode='train')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	Parameters

	
	input (Tensor) –

	target (Tensor) –

	s (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tensor]) –

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Tensor

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fairgrad	

 	
 	
 fairgrad.fairness_functions	

 	
 	
 fairgrad.torch.cross_entropy	

 	
 	
 fairgrad.torch.fairness_loss	

Index

 A
 | C
 | D
 | E
 | F
 | M

A

 	
 	AccuracyParity (class in fairgrad.fairness_functions)

C

 	
 	CrossEntropyLoss (class in fairgrad.torch.cross_entropy)

D

 	
 	DemographicParity (class in fairgrad.fairness_functions)

E

 	
 	EqualityOpportunity (class in fairgrad.fairness_functions)

 	
 	EqualizedOdds (class in fairgrad.fairness_functions)

F

 	
 	
 fairgrad.fairness_functions

 	module

 	
 fairgrad.torch.cross_entropy

 	module

 	
 	
 fairgrad.torch.fairness_loss

 	module

 	FairnessLoss (class in fairgrad.torch.fairness_loss)

 	forward() (fairgrad.torch.fairness_loss.FairnessLoss method)

M

 	
 	
 module

 	fairgrad.fairness_functions

 	fairgrad.torch.cross_entropy

 	fairgrad.torch.fairness_loss

 nav.xhtml

 Table of Contents

 		
 Welcome to fairgrad’s documentation!

 		
 Introduction

 		
 Installation

 		
 Quick Start

 		
 Usage Example

 		
 Citation

 		
 Reference

 		
 fairness.functions

 		
 fairgrad.torch.cross_entropy

 		
 fairgrad.torch.fairness_loss

_static/file.png

_static/minus.png

_static/plus.png

