
fairgrad
Release 0.1.1

Gaurav Maheshwari, Michael Perrot

Feb 10, 2023

CONTENTS:

1 Introduction 1

2 Installation 3

3 Quick Start 5

4 Usage Example 7

5 Citation 9

6 Reference 11
6.1 fairness.functions . 11
6.2 fairgrad.torch.cross_entropy . 12
6.3 fairgrad.torch.fairness_loss . 13

Python Module Index 15

Index 17

i

ii

CHAPTER

ONE

INTRODUCTION

FairGrad, is an easy to use general purpose approach to enforce fairness for gradient descent based methods. The core
idea is to enforce fairness by iteratively learns group specific weights based on whether they are advantaged or not.
FairGrad is:

• Simple and easy to integrate with no significant overhead

• Supports Multiclass problems and can work with any gradient based methods

• Supports various group fairness notions including exact and approximate fairness

• Is competitive on various tasks including complex NLP and CV ones

1

fairgrad, Release 0.1.1

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

You can install FairGrad from PyPI with pip or your favorite package manager:

pip install fairgrad

3

fairgrad, Release 0.1.1

4 Chapter 2. Installation

CHAPTER

THREE

QUICK START

To use fairgrad simply replace your pytorch cross entropy loss with fairgrad cross entropy loss. Alongside, regular
pytorch cross entropy arguments, it expects following extra arguments:

y_train (np.asarray[int], Tensor, optional): All train example's corresponding label.
Note that the label space must start from 0.

s_train (np.asarray[int], Tensor, optional): All train example's corresponding sensitive␣
→˓attribute. This means if there

are 2 sensitive attributes, with each of them being binary. For instance gender -
→˓ (male and female) and

age (above 45, below 45). Total unique sentive attributes are 4.
Note that the protected space must start from 0.

fairness_measure (string): Currently we support "equal_odds", "equal_opportunity",
→˓"accuracy_parity", and "demographic_parity".

Note that demographic parity is only supported for binary␣
→˓case.
epsilon (float, optional): The slack which is allowed for the final fairness level.
fairness_rate (float, optional): Parameter which intertwines current fairness weights␣
→˓with sum of previous fairness rates.

5

fairgrad, Release 0.1.1

6 Chapter 3. Quick Start

CHAPTER

FOUR

USAGE EXAMPLE

Below is a simple example:

>>> from fairgrad.torch import CrossEntropyLoss
>>> input = torch.randn(10, 5, requires_grad=True)
>>> target = torch.empty(10, dtype=torch.long).random_(2)
>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = CrossEntropyLoss(y_train = target, s_train = s, fairness_measure = 'equal_odds
→˓')
>>> output = loss(input, target, s, mode='train')
>>> output.backward()

For complete worked out example refer to example folder on github.

We highly recommend to standardize features by removing the mean and scaling to unit variance. This can be done
using standard scalar module in sklearn.

7

fairgrad, Release 0.1.1

8 Chapter 4. Usage Example

CHAPTER

FIVE

CITATION

Citation for this work:

@article{maheshwari2022fairgrad,
title={FairGrad: Fairness Aware Gradient Descent},
author={Maheshwari, Gaurav and Perrot, Micha{\"e}l},
journal={arXiv preprint arXiv:2206.10923},
year={2022}}

9

fairgrad, Release 0.1.1

10 Chapter 5. Citation

CHAPTER

SIX

REFERENCE

6.1 fairness.functions

class fairgrad.fairness_functions.AccuracyParity(y_unique, s_unique, y, s)
The function implements the accuracy parity fairness function. A model ℎ is fair for Accuracy Parity when
theprobability of being correct is independent of the sensitive attribute.

Parameters

• y_unique (npt.ndarray[int]) – all unique labels in all label space.

• s_unique (npt.ndarray[int]) – all unique protected attributes in all protected attribute
space.

• y (npt.ndarray[int]) – all label space

• s (npt.ndarray[int]) – all protected attribute space

class fairgrad.fairness_functions.DemographicParity(y_unique, s_unique, y, s)
The function implements the demographic parity fairness function. A model ℎ is fair for Demographic Parity
when the probability of predicting each label is independent of the sensitive attribute.

Parameters

• y_unique (npt.ndarray[int]) – all unique labels in all binary label space.

• s_unique (npt.ndarray[int]) – all unique protected attributes in all protected attribute
space.

• y (npt.ndarray[int]) – all binary label space

• s (npt.ndarray[int]) – all protected attribute space

class fairgrad.fairness_functions.EqualityOpportunity(y_unique, s_unique, y, s, y_desirable)
The function implements the accuracy parity fairness function. A model ℎ is fair for Equality of Opportunity
when the probability of predicting the correct label is independent of the sensitive attribute for a given subset of
labels called the desirable outcomes

Parameters

• y_unique (npt.ndarray[int]) – all unique labels in all label space.

• s_unique (npt.ndarray[int]) – all unique protected attributes in all protected attribute
space.

• y (npt.ndarray[int]) – all label space

• s (npt.ndarray[int]) – all protected attribute space

11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

fairgrad, Release 0.1.1

• y_desirable (npt.ndarray[int]) – the label for which the fairness needs to be enforced.

class fairgrad.fairness_functions.EqualizedOdds(y_unique, s_unique, y, s)
The function implements the equal odds fairness function. A model ℎ is fair for Equalized Odds when the
probability of predicting the correct label is independent of the sensitive attribute.

Parameters

• y_unique (npt.ndarray[int]) – all unique labels in all label space.

• s_unique (npt.ndarray[int]) – all unique protected attributes in all protected attribute
space.

• y (npt.ndarray[int]) – all label space

• s (npt.ndarray[int]) – all protected attribute space

6.2 fairgrad.torch.cross_entropy

class fairgrad.torch.cross_entropy.CrossEntropyLoss(reduction='mean', fairness_measure=None,
y_train=None, s_train=None, y_desirable=[1],
epsilon=0.0, fairness_rate=0.01, **kwargs)

This is an extension of the CrossEntropyLoss provided by pytorch. Please check pytorch documentation for
understanding the cross entropy loss.

Parameters

• reduction (string, optional) – Specifies the reduction to apply to the output: 'none'
| 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the weighted mean of the
output is taken, 'sum': the output will be summed. Note: size_average and reduce are
in the process of being deprecated, and in the meantime, specifying either of those two args
will override reduction. Default: 'mean'

• fairness_measure (string, FairnessMeasure) – Currently supported are
“equal_odds”, “equal_opportunity”, “demographic_parity”, and “accuracy_parity”.

• y_train (np.asarray[int], Tensor, optional) – All train example’s corresponding
label

• s_train (np.asarray[int], Tensor, optional) – All train example’s corresponding
sensitive attribute. This means if there are 2 sensitive attributes, with each of them being
binary. For instance gender - (male and female) and age (above 45, below 45). Total unique
sentive attributes are 4.

• y_desirable (np.asarray[int], Tensor, optional) – All desirable labels, only
used with equality of opportunity.

• epsilon (float, optional) – The slack which is allowed for the final fairness level.

• fairness_rate (float, optional) – Parameter which intertwines current fairness
weights with sum of previous fairness rates.

• **kwargs – Arbitrary keyword arguments passed to CrossEntropyLoss upon instantiation.
Using is at your own risk as it might result in unexpected behaviours.

Examples:

12 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fairgrad, Release 0.1.1

>>> input = torch.randn(10, 5, requires_grad=True)
>>> target = torch.empty(10, dtype=torch.long).random_(2)
>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = CrossEntropyLoss(y_train = target, s_train = s, fairness_measure =
→˓'equal_odds')
>>> output = loss(input, target, s, mode='train')
>>> output.backward()

6.3 fairgrad.torch.fairness_loss

class fairgrad.torch.fairness_loss.FairnessLoss(base_loss_class, reduction='mean',
fairness_measure=None, y_train=None,
s_train=None, y_desirable=[1], epsilon=0.0,
fairness_rate=0.01, **kwargs)

This is an extension of the losses provided by pytorch. Here, we augment the losses to enforce fairness. The
exact algorithm can be found in the Fairgrad paper <https://arxiv.org/abs/2206.10923>.

Parameters

• base_loss_class (nn.modules.loss._Loss) – Specifies the base loss as a proper base
loss.

• reduction (string, optional) – Specifies the reduction to apply to the output: 'none'
| 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the weighted mean of the
output is taken, 'sum': the output will be summed. Note: size_average and reduce are
in the process of being deprecated, and in the meantime, specifying either of those two args
will override reduction. Default: 'mean'

• fairness_measure (string, FairnessMeasure) – Currently supported are
“equal_odds”, “equal_opportunity”, “demographic_parity”, and “accuracy_parity”.

• y_train (np.asarray[int], Tensor, optional) – All train example’s corresponding
label

• s_train (np.asarray[int], Tensor, optional) – All train example’s corresponding
sensitive attribute. This means if there are 2 sensitive attributes, with each of them being
binary. For instance gender - (male and female) and age (above 45, below 45). Total unique
sentive attributes are 4.

• y_desirable (np.asarray[int], Tensor, optional) – All desirable labels, only
used with equality of opportunity.

• epsilon (float, optional) – The slack which is allowed for the final fairness level.

• fairness_rate (float, optional) – Parameter which intertwines current fairness
weights with sum of previous fairness rates.

• **kwargs – Arbitrary keyword arguments passed to base_loss_class upon instantiation. Us-
ing is at your own risk as it might result in unexpected behaviours.

Examples:

>>> input = torch.randn(10, 5, requires_grad=True)
>>> target = torch.empty(10, dtype=torch.long).random_(2)
>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = FairnessLoss(nn.CrossEntropyLoss,y_train = target, s_train = s, fairness_

(continues on next page)

6.3. fairgrad.torch.fairness_loss 13

https://arxiv.org/abs/2206.10923
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fairgrad, Release 0.1.1

(continued from previous page)

→˓measure = 'equal_odds')
>>> output = loss(input, target, s, mode='train')
>>> output.backward()

forward(input, target, s=None, mode='train')
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Parameters

• input (Tensor) –

• target (Tensor) –

• s (Optional[Tensor]) –

• mode (str) –

Return type
Tensor

14 Chapter 6. Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PYTHON MODULE INDEX

f
fairgrad.fairness_functions, 11
fairgrad.torch.cross_entropy, 12
fairgrad.torch.fairness_loss, 13

15

fairgrad, Release 0.1.1

16 Python Module Index

INDEX

A
AccuracyParity (class in fairgrad.fairness_functions),

11

C
CrossEntropyLoss (class in fair-

grad.torch.cross_entropy), 12

D
DemographicParity (class in fair-

grad.fairness_functions), 11

E
EqualityOpportunity (class in fair-

grad.fairness_functions), 11
EqualizedOdds (class in fairgrad.fairness_functions),

12

F
fairgrad.fairness_functions

module, 11
fairgrad.torch.cross_entropy

module, 12
fairgrad.torch.fairness_loss

module, 13
FairnessLoss (class in fairgrad.torch.fairness_loss), 13
forward() (fairgrad.torch.fairness_loss.FairnessLoss

method), 14

M
module

fairgrad.fairness_functions, 11
fairgrad.torch.cross_entropy, 12
fairgrad.torch.fairness_loss, 13

17

	Introduction
	Installation
	Quick Start
	Usage Example
	Citation
	Reference
	fairness.functions
	fairgrad.torch.cross_entropy
	fairgrad.torch.fairness_loss

	Python Module Index
	Index

