fairgrad
Release 0.1.1

Gaurav Maheshwari, Michael Perrot

Sep 06, 2022

CONTENTS:

1 Introduction

2 Installation

3 Quick Start

4 Usage Example
5 Citation

6 Reference
6.1 fairness.functions e e e e e e e
6.2 fairgrad.torch.CrosS_entropy v v v v v i e e e e e e e e e e e e e e e e e e e

Python Module Index

Index

11
11
12

15

17

CHAPTER
ONE

INTRODUCTION

FairGrad, is an easy to use general purpose approach to enforce fairness for gradient descent based methods. The core
idea is to enforce fairness by iteratively learns group specific weights based on whether they are advantaged or not.
FairGrad is:

» Simple and easy to integrate with no significant overhead
* Supports Multiclass problems and can work with any gradient based methods
* Supports various group fairness notions including exact and approximate fairness

* Is competitive on various tasks including complex NLP and CV ones

fairgrad, Release 0.1.1

2 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

You can install FairGrad from PyPI with pip or your favorite package manager:

pip install fairgrad

fairgrad, Release 0.1.1

4 Chapter 2. Installation

CHAPTER
THREE

QUICK START

To use fairgrad simply replace your pytorch cross entropy loss with fairgrad cross entropy loss. Alongside, regular
pytorch cross entropy arguments, it expects following extra arguments:

y_train (np.asarray[int], Tensor, optional): All train example's corresponding label.

Note that the label space must start from 0.
s_train (np.asarray[int], Tensor, optional): All train example's corresponding sensitive.
—attribute. This means if there

are 2 sensitive attributes, with each of them being binary. For instance gender -
—, (male and female) and

age (above 45, below 45). Total unique sentive attributes are 4.

Note that the protected space must start from 0.
fairness_measure (string): Currently we support "equal_odds", "equal_opportunity",
—"accuracy_parity", and "demographic_parity".

Note that demographic parity is only supported for binary.

-.case.
epsilon (float, optional): The slack which is allowed for the final fairness level.
fairness_rate (float, optional): Parameter which intertwines current fairness weights.
—with sum of previous fairness rates.

fairgrad, Release 0.1.1

6 Chapter 3. Quick Start

CHAPTER
FOUR

USAGE EXAMPLE

Below is a simple example:

>>> from fairgrad.torch import CrossEntropyLoss

>>> input = torch.randn(10, 5, requires_grad=True)

>>> target = torch.empty(10, dtype=torch.long).random_(2)

>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute

>>> loss = CrossEntropylLoss(y_train = target, s_train = s, fairness_measure = 'equal_odds
)

>>> output = loss(input, target, s, mode='train')

>>> output.backward()

For complete worked out example refer to example folder on github.

fairgrad, Release 0.1.1

8 Chapter 4. Usage Example

CHAPTER
FIVE

Citation for this work:

CITATION

@article{maheshwari2022fairgrad,
title={FairGrad: Fairness Aware Gradient Descent},
author={Maheshwari, Gaurav and Perrot, Micha{\"e}l},
journal={arXiv preprint arXiv:2206.10923},
year={2022}}

fairgrad, Release 0.1.1

10 Chapter 5. Citation

CHAPTER
SIX

REFERENCE

6.1 fairness.functions

class fairgrad.fairness_functions.AccuracyParity(y_unique, s_unique,y, s)

The function implements the accuracy parity fairness function. A model h is fair for Accuracy Parity when
theprobability of being correct is independent of the sensitive attribute.

Parameters
* y_unique (npt.ndarray[int]) — all unique labels in all label space.

* s_unique (npt.ndarray[int]) — all unique protected attributes in all protected attribute
space.

* y(npt.ndarray[int]) — all label space
* s(npt.ndarray[int]) — all protected attribute space

class fairgrad.fairness_functions.DemographicParity(y_unique, s_unique,y, s)

The function implements the demographic parity fairness function. A model h is fair for Demographic Parity
when the probability of predicting each label is independent of the sensitive attribute.

Parameters
* y_unique (npt.ndarray[int]) — all unique labels in all binary label space.

* s_unique (npt.ndarray[int]) — all unique protected attributes in all protected attribute
space.

* y (npt.ndarray[int]) — all binary label space
* s (npt.ndarray[int]) — all protected attribute space

class fairgrad.fairness_functions.EqualityOpportunity(y_unique, s_unique,y, s, y_desirable)

The function implements the accuracy parity fairness function. A model h is fair for Equality of Opportunity
when the probability of predicting the correct label is independent of the sensitive attribute for a given subset of
labels called the desirable outcomes

Parameters
* y_unique (npt.ndarray[int]) — all unique labels in all label space.

* s_unique (npt.ndarray[int]) — all unique protected attributes in all protected attribute
space.

* y (npt.ndarray[int]) — all label space

* s (npt.ndarray[int]) — all protected attribute space

11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

fairgrad, Release 0.1.1

e y_desirable (npt.ndarray[int])— the label for which the fairness needs to be enforced.

class fairgrad.fairness_functions.EqualizedOdds (y_unique, s_unique,y, s)

The function implements the equal odds fairness function. A model h is fair for Equalized Odds when the
probability of predicting the correct label is independent of the sensitive attribute.

Parameters
* y_unique (npt.ndarray[int]) — all unique labels in all label space.

* s_unique (npt.ndarray[int]) — all unique protected attributes in all protected attribute
space.

* y (npt.ndarray[int]) — all label space
* s (npt.ndarray[int]) — all protected attribute space

class fairgrad.fairness_functions.FairnessSetupArguments (fairness_function_name: str,y_unique:
<built-in function asarray>, s_unique:
<built-in function asarray>, all_train_y:
<built-in function asarray>, all_train_s:
<built-in function asarray>, y_desirable:
Union[<built-in function asarray>,
NoneType] = None)

Parameters
e fairness_function_name (str)—
e y_unique (asarray) —
e s_unique (asarray) —
e all_train_y (asarray) -
e all_train_s (asarray) —

e y_desirable (Optional [asarray]) —

6.2 fairgrad.torch.cross_entropy

class fairgrad.torch.cross_entropy.CrossEntropyLoss (weight=None, size_average=None,
ignore_index=-100, reduce=None,
reduction="mean’, y_train=None, s_train=None,
fairness_measure=None, epsilon=0.0,
fairness_rate=0.01)

This is an extension of the CrossEntropyLoss provided by pytorch. Please check pytorch documentation for
understanding the cross entropy loss. Here, we augment the cross entropy to enforce fairness. The exact algorithm
can be found in Fairgrad paper <https://arxiv.org/abs/2206.10923>.

Parameters

* weight (Tensor, optional) — a manual rescaling weight given to each class. If given,
has to be a Tensor of size C

» size_average (bool, optional) - Deprecated (see reduction). By default, the losses
are averaged over each loss element in the batch. Note that for some losses, there are multiple
elements per sample. If the field size_average is set to False, the losses are instead
summed for each minibatch. Ignored when reduce is False. Default: True

12 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://arxiv.org/abs/2206.10923
https://docs.python.org/3/library/functions.html#bool

fairgrad, Release 0.1.1

» ignore_index (int, optional) — Specifies a target value that is ignored and does not
contribute to the input gradient. When size_average is True, the loss is averaged over
non-ignored targets.

» reduce (bool, optional)-Deprecated (see reduction). By default, the losses are aver-
aged or summed over observations for each minibatch depending on size_average. When
reduce is False, returns a loss per batch element instead and ignores size_average. De-
fault: True

» reduction (string, optional)— Specifies the reduction to apply to the output: 'none’
| 'mean' | 'sum'. "none': no reduction will be applied, 'mean’: the weighted mean of the
output is taken, 'sum': the output will be summed. Note: size_average and reduce are
in the process of being deprecated, and in the meantime, specifying either of those two args
will override reduction. Default: 'mean'

e y_train (np.asarray[int], Tensor, optional)- All train example’s corresponding
label

* s_train (np.asarray[int], Tensor, optional)- All train example’s corresponding
sensitive attribute. This means if there are 2 sensitive attributes, with each of them being
binary. For instance gender - (male and female) and age (above 45, below 45). Total unique
sentive attributes are 4.

ELIT3

» fairness_measure (string) — Currently we support “equal_odds”, “equal_opportunity”,
and “accuracy_parity”.

e epsilon (float, optional)— The slack which is allowed for the final fairness level.

o fairness_rate (float, optional) — Parameter which intertwines current fairness
weights with sum of previous fairness rates.

Examples:

>>> input = torch.randn(10, 5, requires_grad=True)

>>> target = torch.empty(10, dtype=torch.long).random_(2)

>>> s = torch.empty(10, dtype=torch.long).random_(2) # protected attribute
>>> loss = CrossEntropylLoss(y_train = target, s_train = s, fairness_measure =
—'equal_odds"')

>>> output = loss(input, target, s, mode='train')

>>> output.backward()

forward (input, target, s=None, mode="train")

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Parameters
* input (Tensor) —
* target (Tensor) —
» s (Optional [Tensor]) —

e mode (str) —

6.2. fairgrad.torch.cross_entropy 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

fairgrad, Release 0.1.1

Return type
Tensor

14 Chapter 6. Reference

PYTHON MODULE INDEX

f

fairgrad. fairness_functions, 11
fairgrad.torch.cross_entropy, 12

15

fairgrad, Release 0.1.1

16 Python Module Index

A

AccuracyParity (class in fairgrad.fairness_functions),
11

C

CrossEntropyLoss (class in fair-
grad.torch.cross_entropy), 12

D

DemographicParity (class in fair-
grad.fairness_functions), 11

E

EqualityOpportunity (class in fair-
grad.fairness_functions), 11

EqualizedOdds (class in fairgrad.fairness_functions),
12

F

fairgrad. fairness_functions

module, 11
fairgrad.torch.cross_entropy
module, 12
FairnessSetupArguments (class in fair-

grad.fairness_functions), 12

forward Q) (fairgrad.torch.cross_entropy.CrossEntropyLoss

method), 13

M

module
fairgrad. fairness_functions, 11
fairgrad.torch.cross_entropy, 12

INDEX

17

	Introduction
	Installation
	Quick Start
	Usage Example
	Citation
	Reference
	fairness.functions
	fairgrad.torch.cross_entropy

	Python Module Index
	Index

